Simulating an empirical paper in economics Why publication bias is so common

2014 MAER-Net Colloquium in Athens

Martin Paldam

Based on paper with URL: http://www.martin.paldam.dk/Papers/Metamethod/Simulating-pub-bias.pdf Four highlights, with a preview of answers

- 1. How to simulate economic research and hence simulate 'realistic' funnels?
- Use economic theory on choice problem of researchers: The fit-size diagram → textbook choice
- 2. How different is polishing (fit) and censoring (size)?
- They are amazingly similar
- 3. How many simulations should you make?
- Go on till pattern in results is smooth! I did 70 x 10⁶ regs.
- 4. Is the PET or PEESE better?
- They are rather similar: The big step is from the mean to either of the two 2

The format of the research process of an empirical paper estimates parameter β

I. Intuition \rightarrow theory \rightarrow Qualitative prediction: $\beta > 0$

II. Theory \rightarrow Estimating model: The β -term + cp controls + other controls: Concentrate on β -term cp controls for β heterogeneity: Deleted \rightarrow noise. Other controls taken to be noise. Thus big noise

III. Search among model estimates: Generate *J* estimatesIV. Choose the main one to publish: *SR* choice rules

Textbook choice: PPF, production possibility frontier, and IC, Indifference curves → J & SR

- Production function for research results, DGP/EM produces the *J*-set, which is the choice set its rim is:
- PPF, production possibility frontier: PPF = PPF(*J*)
- Researchers + journals have priors for *fit* and *size* of results
- IC, **indifference curves**, for size and fit
- *SR*s, selection rules: for results published

Where does the *fit* and the *size* priors come from:

- Many different priors, may be OK, **but problem if:**
- MP main prior: Joint for too many researchers
- MP1: Prior for clear results, *fit* (t-ratio), afflicts us all
- MP 2: Standard economic theory, *size* (normally sign)
- MP 3: Political-moral beliefs, *size*
- MP 4: Interest of big sponsors, *size*
- PS: The paper assumes two main priors:
- (1) **a fit prior + a size prior** not its origin PS: Use a fit-size diagram
- Prior 5: Prior results of researchers: Past MP → future MP

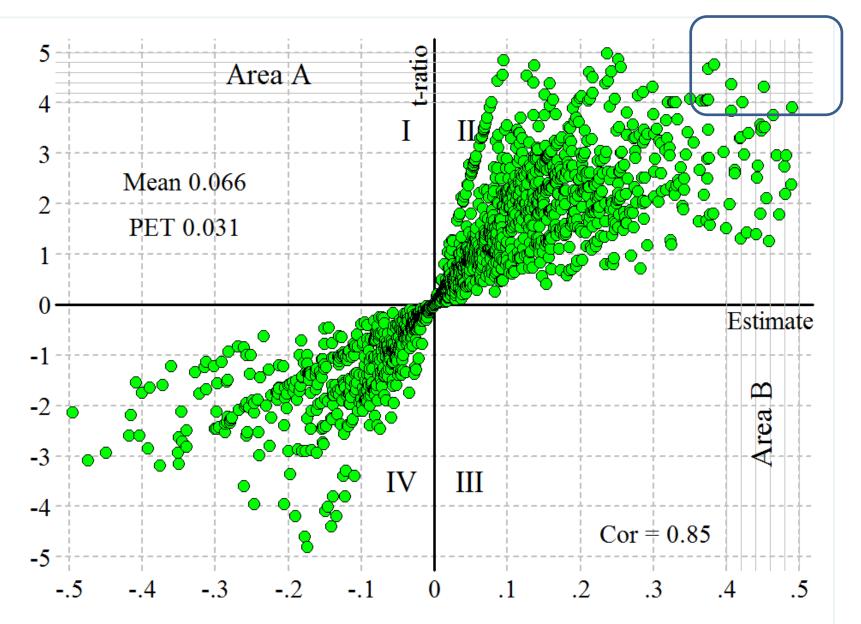
Method: Simulations calibrated by meta-analysis. It studies the β -literature: i.e., the *N* estimates that pertain to be of the same β

- Meta-analysis: 750 ± 250 meta-studies in economics The average meta study analyzes about 50 papers
- Hence, about 40,000 papers coded.
- So you can calibrate simulations to look reasonable
- I take two results to generalize: Big variation + frequent bias

From analytical solution to simulations

- **Two years ago**: I presented a theory explaining *J* based on marginal costs and benefits of running regressions.
- Published in *Econ Journal Watch* 10(2), 136-56
- Showing: marginal costs have dropped $\rightarrow J$ must rise
- I looked at SRs (selection rules) I could solve analytically. I could solve a few, but missed important ones
- Today: *J* is exogenous to study effect of different *J*s
- I make 5 SRs that I believe are the main ones in practice.
- These SRs are simulated on same J-sets so easy to compare
- How does J-sets look: PS look at *N*-set (hmm)

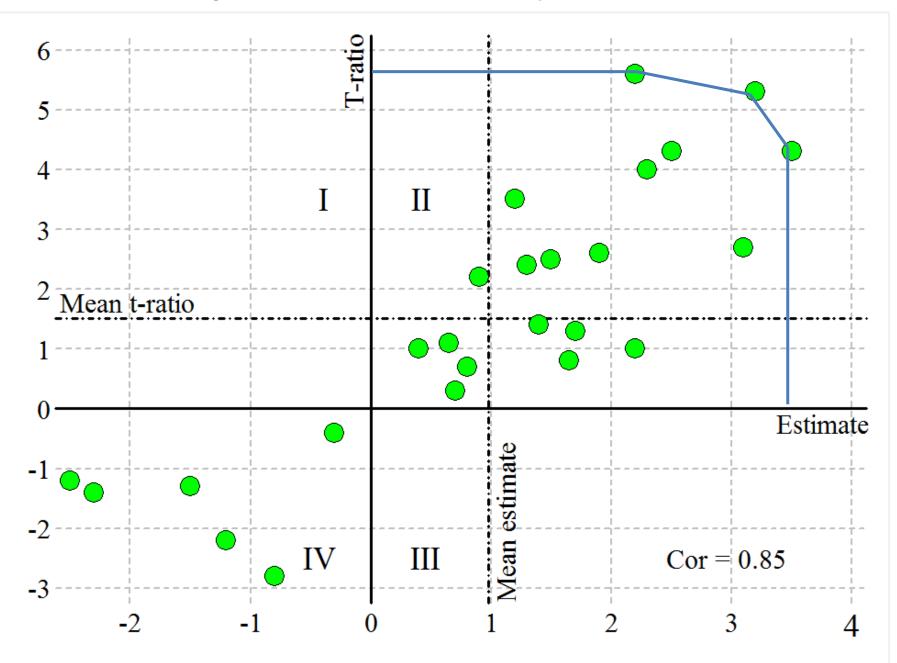
The example: the 1,777 published estimates of aid effectiveness. PS 90 extreme deleted



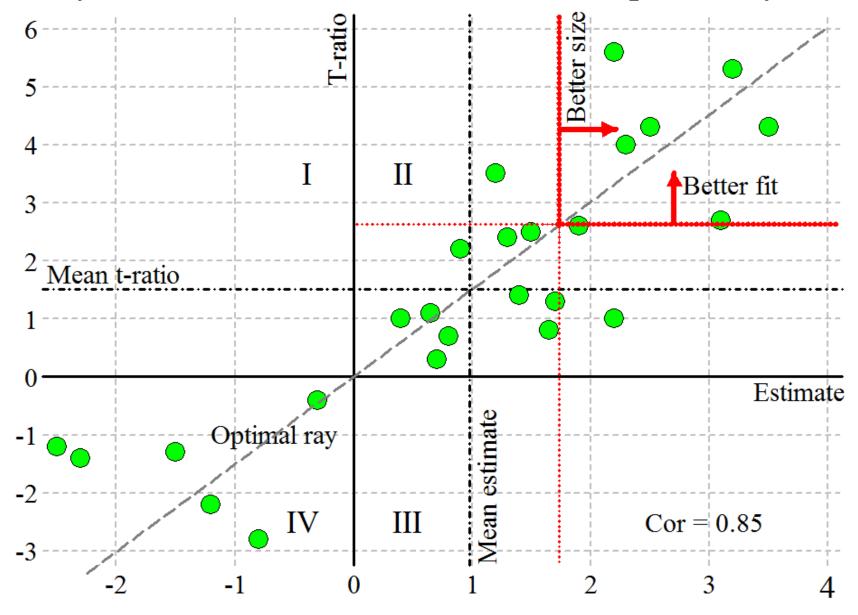
Are fit and size related?

- 1. Correlation $r(b_i, t_i) = 0.85$ is strong relation
- 2. Area A: marked with horizontal lines: High fit Presumably chosen by fit-prior SR2
- 3. Area B: marked with vertical lines: Large size Presumably chosen by size prior
- 4. Overlapping area both high fit and size very few points. Thus, weak relation
- 5. Hmmm: Conflicting evidence

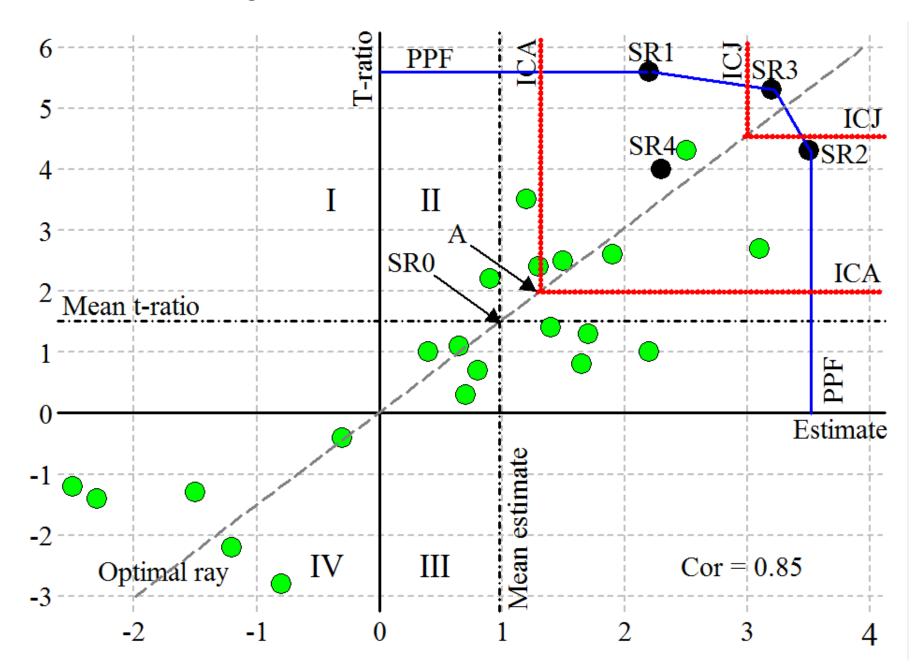
The 25 regressions of the *J*-set. $\beta = 1$. Rim is PPF



Indifference curves: (i) horizontal, (ii) vertical, (iii) kinked Rays: better the further out. Choice of optimal ray



Combining size and fit: The PPF/IC framework

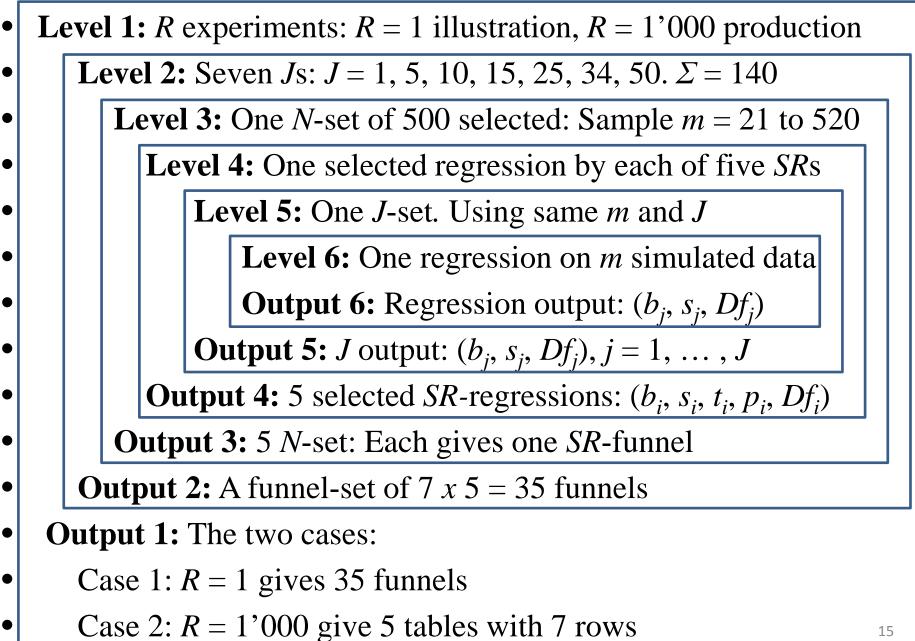


Note on $r(b_i, t_i)$

- Correlation chosen to be as high as before
- All SRs give different points, but:
- But easy to make examples where they are the same
- Especially for small values of J
- Evidence still conflicting but it suggests
- For J = 1 the same, as J grows it will grow

Simulation program in stata by *Jan Ditzen*. Uses the Matryoshka set-up: Show 5 levels

Experiments: Uses 6 levels



PS: The PET is made to adjust for censoring SR2

- Two important questions
- **Q1:** Does the PET work for *SR*1, *SR*3 and *SR*4?
- Q2: How different are the outcomes for the four *SR*s?
 Notably: How different is *SR*1 and *SR*2 ? The two extremes. Dream: They are the same!

Some of the nitty-gritty

- Data generating process: DGP $y_t = \beta x_t + \varepsilon_t$ where $\beta = 1$
- Estimation model (OLS): EM $y_t = b x_t + u_t$
- Variation: $m = 21, ..., 520, \varepsilon_t = N(0, \sigma_{\varepsilon}^2)$ and $x_t = N(0, \sigma_x^2)$
- To get enough variation $\sigma_{\varepsilon}^2 = 10$ and $\sigma_x^2 = 2$

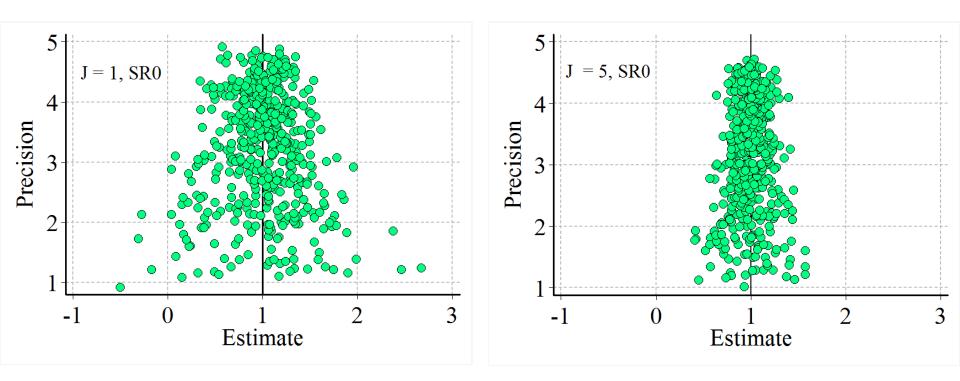
The numbers in the simulations:

- R = 1 funnel-set (5 SRs, 7 Js) is 35 funnels PS $\Sigma J = 140$ so 140 x 500 = 70,000 regressions
- R = 1,000: gives $1,000 \times 70,000 = 70 \times 10^6$ regressions.
- One week for a strong pc's working day and night
- PS: Tom Stanley prefers 10,000 funnel sets!
- But: If the points for one *SR* is smooth for different *J*s Then you use all the regressions to 'justify' each other

Results for SR0. Select the mean or median

- Why: You plan the best set of regressions, run them and report the average + the std.
- PS: for *J* = 1, the ideal funnel. Its width corresponds to the t-ratios, and it is nicely symmetrical
- Thus $\underline{b} \approx \beta_M \approx \beta$
- And when J goes up the width falls with \sqrt{J} , but same t's
- Thus the funnels become leaner and leaner

SR0 baseline: For J = 1 (ideal) and 5



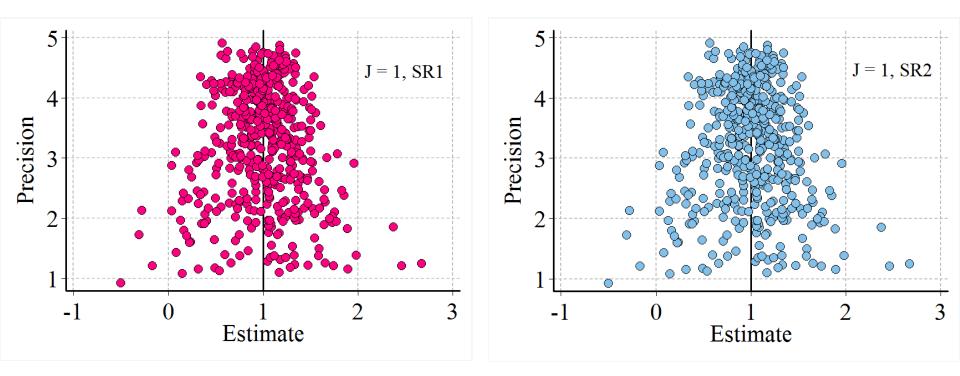
Is SR0 realistic?

- We know: empirical funnels are wide relative to t-ratios Ideal funnels have J = 1, they should be wider as J rises
- But *SR*0 gives funnels that become more and more narrow relative to the t-ratios
- Thus, SR0 must be rare in practice
- Now to the two extreme *SRs* Remember dream!

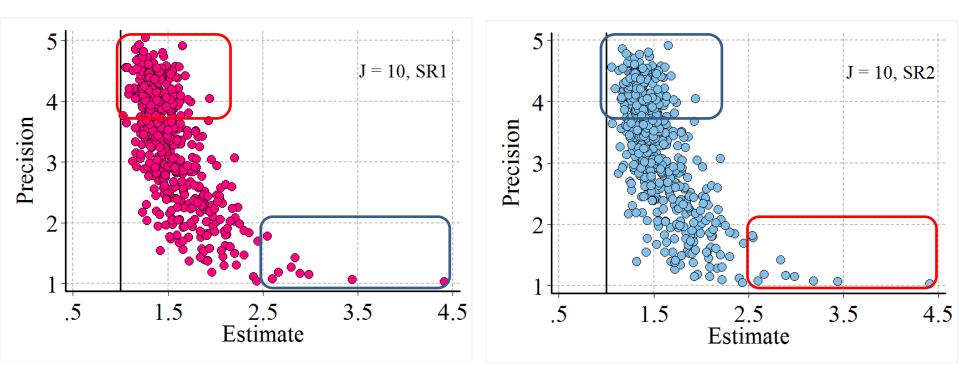
SR1: Best *fit*, highest t-ratioSR2: Best *size*, highest b-estimate

- Shown as a cartoon: Illustrated by 1 funnel for each J = 1, 10, 25 and 50
- *SR*1 is a little tricky: Drawn with *p* over *b*. When J goes up so do *p* but *b* goes up as well: $t = b/s = bp \rightarrow p = t/b$, so *t* and *b* rise almost the same.
- For *J* up both funnels more sausage-like.
- Most different:
- For small b's where you still get some high t's and
- For small *t*'s, where you still get some high b's

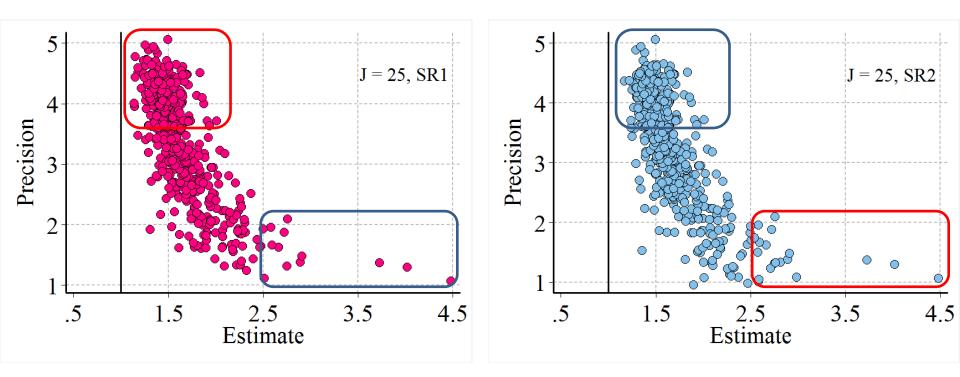
Comparing *SR*1 (polishing) and *SR*2 (censoring): For J = 1. Here the two funnels are the same This is the ideal funnel (same as before)



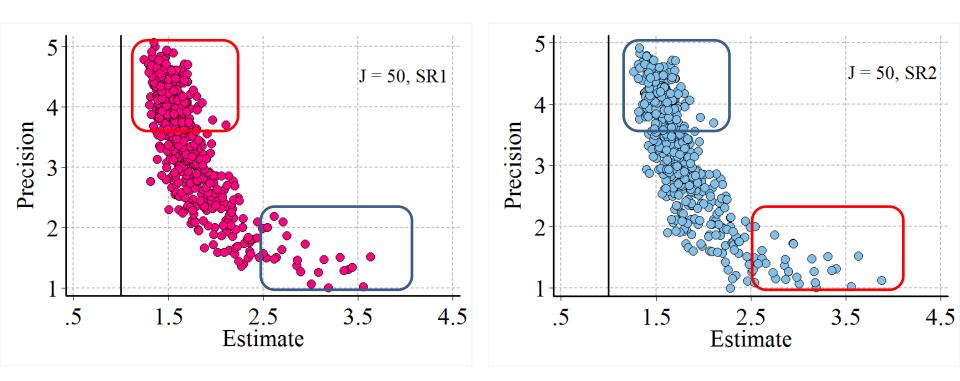
Comparing SR1 (polishing) and SR2 (censoring): For J = 10. The two funnels still similar



Comparing SR1 (polishing) and SR2 (censoring): For J = 25. Differences starts to grow but they are not big!



Comparing SR1 (polishing) and SR2 (censoring): For J = 50. The two funnels still similar



(Table 4). SR1, the polished funnel Undershoots a bit

(1)	(2)	(3)	(4)
J	<u>b</u>	eta_M	eta_F
1	1.00	1.00	0.00
5	1.42	0.98	1.22
10	1.54	0.97	1.62
15	1.61	0.97	1.82
25	1.69	0.96	2.08
34	1.73	0.96	2.22
50	1.78	0.95	2.39

(Table 5). SR2, the censored funnel. Overshoots a bit

(1)	(2)	(3)	(4)
J	<u>b</u>	eta_M	eta_F
1	1.00	1.00	0.00
5	1.43	1.00	1.16
10	1.57	1.01	1.51
15	1.64	1.01	1.69
25	1.73	1.02	1.91
34	1.78	1.02	2.02
50	1.84	1.03	2.16

Results from *SR*2 look remarkably like *SR*1 Bias in mean that grows with *J* to 80 %

- PET bias from negative (for *SR*1) to positive (for *SR*2)
- PS: *SR*2 is what the PET is made for, and it works well about 2-3 % wrong only!
- Now *SR3*: The best combination of fit and size
- It is almost the average of the results for *SR*1 and *SR*2

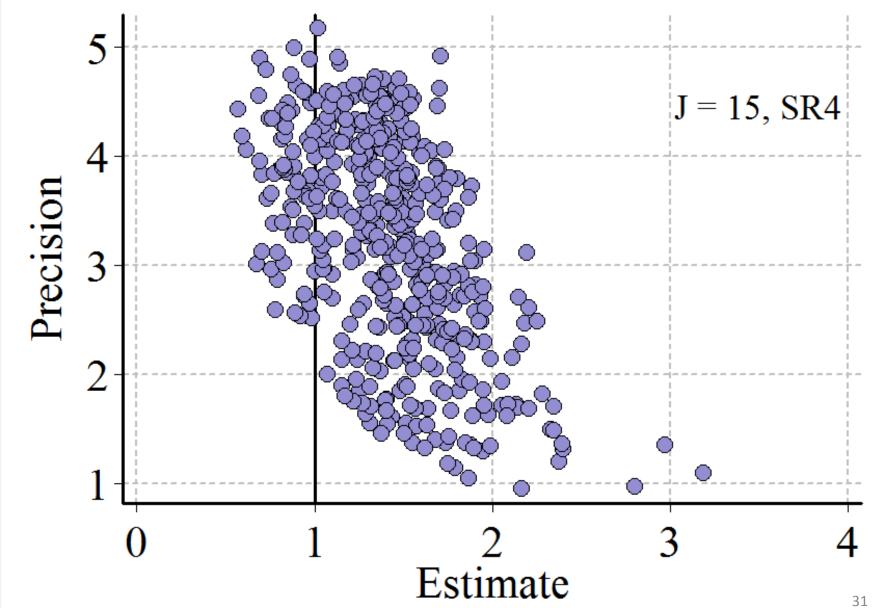
(Table 6). Selection rule SR3. Super fit of β_M

(1)	(2)	(3)	(4)
J	<u>b</u>	eta_M	eta_F
1	1.00	1.00	0.00
5	1.43	0.99	1.16
10	1.56	0.99	1.51
15	1.63	0.99	1.69
25	1.72	0.99	1.91
34	1.76	0.99	2.02
50	1.82	0.99	2.16

Results for SR3 and SR4 funnels and tables in paper

- *SR*3 is a compromise between *SR*1 and *SR*2. As they look the same, so does *SR*3. As the PET bias is negative for *SR*1 and positive for *SR*2 it is really small for *SR*3: typically -1 % (small overshooting)
- SR4 is different as J is endogenous. For J = 5 it looks like the previous. As J rises it becomes a mixture, and there are some values below 1 all the way up.
- I show the case for *SR*4 and J = 15

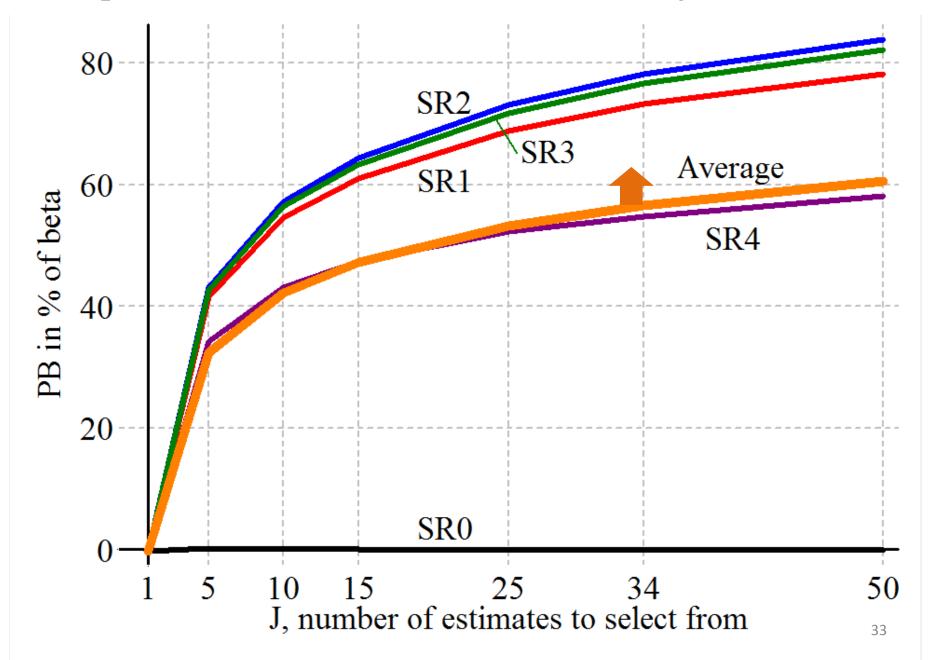
SR4: J = 15



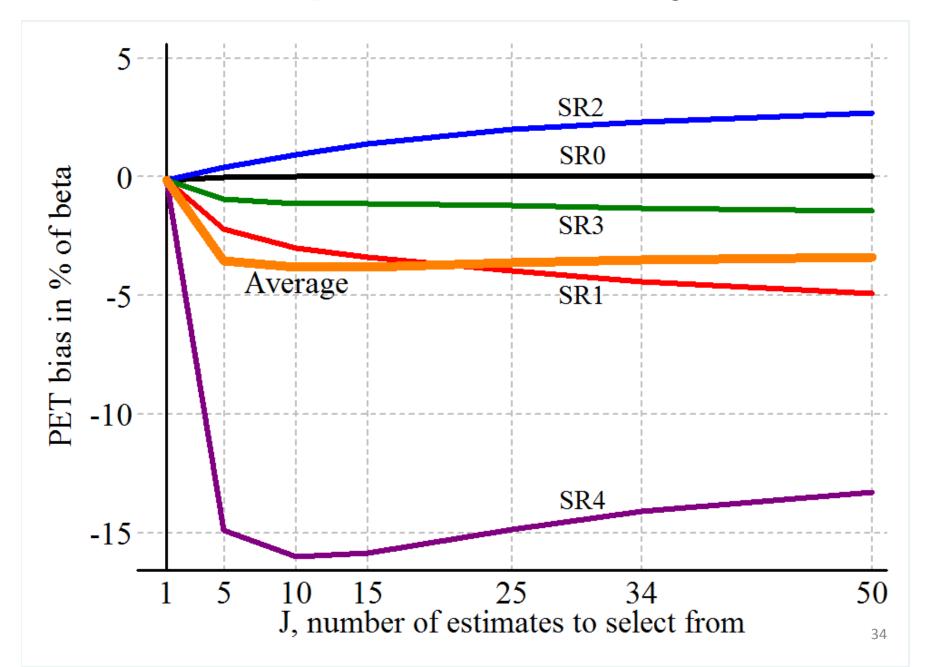
Now I compare graphically:

- One graph covers one statistic PB^T , PB_{PET} , FAT, μ
- The 7 Js are 7 points on the horizontal axis
- Each graph has six curves:
- One curve for each SR + the average
- PS: researchers use different *J*s and *SR*s

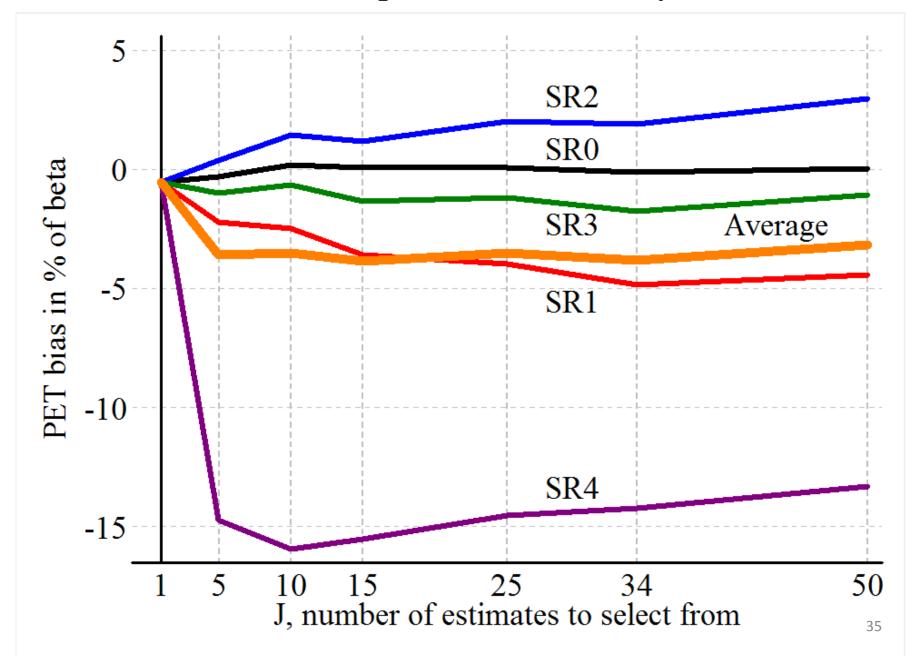
True publication bias of the mean. PS average at 50 to 70%



PET bias. Scale up 4 times. Most + average within $\pm 5\%$



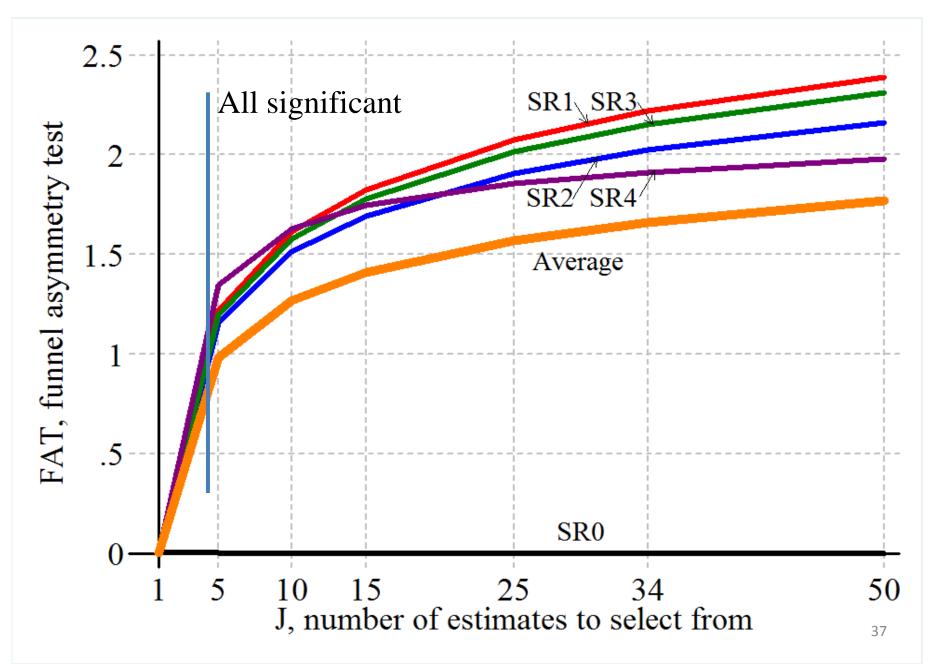
Same for 100 experiments. Not very smooth



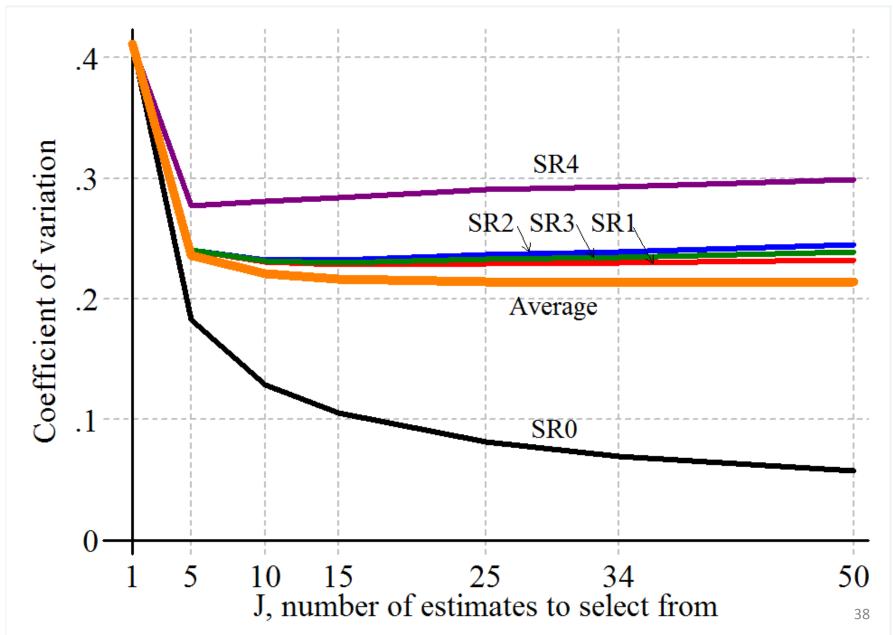
Conclusions on publication bias:

- Selection of 'best' results \rightarrow always gives positive bias
- The bias is substantial: About 50-60 % (incl 20 % SR0)
- The main prior $\beta > 0$ causes $\underline{b} > \beta$
- This confirms: The exaggeration result
- Other term: The theory confirmation bias
- The PET is much closer to the true value: In average it is less than 10 % of the *PB*, i.e., within 4 % from β

The FAT



Width of funnel. A problem. Empirical funnels are wide



My interpretation

- Simulations catch 2/3 of the typical publication bias
- The funnels observed are a mixture of the funnels simulated. So it looks realistic!

- The PET catches the true value of β amazingly well
- It does not matter if the SR is SR1, SR2 or SR3
- The PB found is 1.5 1.7
- There is more due to model variation: It is rather PB = 2

PET or PEESE – does it matter?

- Exchange equation in simulations one more time 70 mill simulated regressions.
- Easy to do, and then you just run your computer for a week. With no stops
- Results are mostly marginally different
- But the PET is normally a little closer to β in average and the PEESE has fewer rejections of true values

Comparing all 35 cases

	Best	Best	Same	Don't Reject $\beta = 1$	
	PB _{PET}	PB _{PEESE}	<i>J</i> =1	PET	PEESE
SR0	6	0	1	4	3
SR1	2	4	1	0	7 B
SR2	3	3	1	0	7 B
SR3	5	1	1	2	5
SR4	5 B	1	1	1	6
Sum	21	9	5	7	28

Missing/problems:

- Model variation. Difficult to simulate and less transparent. I think: It increases biases and μ
- SRs based on models with more coefficients: I think: It decreases biases but increase μ

• The End